
 Page 1

Augmenting Software Architectures with Physical Components
Ajinkya Bhave1, David Garlan2, Bruce H. Krogh1, Akshay Rajhans1, Bradley Schmerl2

1Dept. of Electrical and Computer Engineering
2School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213-3890 USA

email: {ajinkya@ | garlan@cs.| krogh@ece.| arajhans@ece.| schmerl@cs.}cmu.edu

Abstract: This paper presents an extension of exist-
ing software architecture tools to model physical sys-
tems, their interconnections, and the interactions
between physical and cyber components. We intro-
duce a new cyber-physical system (CPS) architec-
tural style to support the construction of architectural
descriptions of complete systems and to serve as the
reference context for analysis and evaluation of de-
sign alternatives using existing model-based tools.
The implementation of the CPS architectural style in
AcmeStudio includes behavioral annotations on com-
ponents and connectors using either finite state proc-
esses (FSP) or linear hybrid automata (LHA) with
plug-ins to perform behavior analysis. The application
of the CPS architectural style is illustrated for the
STARMAC quadrotor.

Keywords: Software Architecture, Embedded, Con-
trol, Physical Modelling.

1. Introduction

Today’s models and methods for analysis and design
of embedded control systems are typically frag-
mented along lines defined by disparate mathemati-
cal formalisms and dissimilar methodologies in engi-
neering and computer science. While separation of
concerns is needed for tractability, such analytical
approaches often impose an early separation be-
tween the cyber and physical features of the system
design, making it difficult to assess the impacts and
tradeoffs of alternatives that cut across the bounda-
ries between these domains. This paper concerns
extensions of software architectures to include the
physical elements of embedded control systems.

Architectures typically represent systems at a higher
level than simulation models, which represent the
details of a particular system implementation. Al-
though architectural modeling has been used in spe-
cific domains to incorporate physical elements as
components, there is currently no way of treating
cyber and physical elements equally in a general
fashion. This is because the vocabulary is inadequate
for representing physical components and their inter-
actions with computational elements in embedded
control systems and other cyber-physical systems
(CPS). Our goal is to create a CPS architectural style
as a comprehensive framework for using diverse

models and tools for analysis and design of cyber-
physical systems.

As a system is being designed, engineers typically
want to expose some aspects of a system while
abstracting away details of other aspects of the sys-
tem. From an architectural perspective, when the
system is modeled for analysis using a particular
formalism, the model typically reflects a structural
view of the system that differs from the detailed ar-
chitecture in some respects. In some cases, one
may even want to use a different architectural style
to represent an analysis or simulation model in terms
of components and connectors. This leads to the
need to support different architectural views of the
modeled system. In this paper the relationships of
heterogeneous models to the CPS architecture are
developed by formalizing the structure of each model
as an architecture in its own right, which is then as-
sociated to the CPS architecture as a particular view
of the system.

The following section describes related work in this
area. Section 3 motivates the need for a unifying
framework augmented with physical components
and multiple system views. Section 4 introduces the
CPS architectural style. Section 5 describes an ex-
ample quadrotor system whose architectural descrip-
tion in the CPS style in presented in Section 6. Sec-
tion 7 presents two models of the quadrotor in differ-
ent formalisms as architectural views. Section 8
outlines how analyses can be carried out using ap-
propriate plugins in the architecture design tool Ac-
meStudio. Section 9 summarizes the contributions of
this paper and discusses directions for future work.

2. Related Work

Over the past decade software architecture has
emerged as one of the primary techniques for disci-
plined engineering of large-scale software systems.
Software architecture typically models a system as a
graph of components and connectors in which the
components represent principal computational ele-
ments of a system's run-time structure and the con-
nectors represent the pathways of communication
between components [2]. These elements are anno-
tated with properties that characterize their abstract
behavior and facilitate reasoning about system-level

 Page 2

design tradeoffs. There has been considerable re-
search and development in Architecture Description
Languages (ADLs) and tools to support their analysis
and realization as code [13]. Standardized notations
such as UML 2.0 [11], SysML [1] and AADL [10] pro-
vide modeling vocabularies of components, connec-
tors and properties. These notations are supported by
tools that provide graphical editing and viewing, hier-
archical development [14], checking for component
compatibility or substitutability [2], and evaluation of
quality attributes such as performance, reliability, and
security. Software architectures also support reuse of
design expertise and code infrastructure and have
been used effectively for a number of embedded
control applications [4, 10].

There are also a number of tools for modeling and
simulating physical systems. For example, Modelica
is a popular object-oriented, open-standard language
for constructing component-based models of physical
systems [24]. MapleSim is a tool for developing mod-
els of physical systems and generating efficient code
for real-time simulations, particularly for hardware-in-
the-loop testing [25]. In contrast to the signal flow
semantics used in control system modeling, composi-
tions of physical systems are most naturally modeled
using acausal connections, which are symmetric re-
action relations for which the directionality of interac-
tion flows is determined by the internal state of the
interconnected components. Making connections
between physical modeling tools and control-oriented
modeling frameworks has become an important goal
for model-based development (MBD), particularly for
avionics systems [19]. MathWorks has introduced
Simscape, a textual MATLAB-based modeling lan-
guage and Simulink block set that makes it possible
to integrate physical models with control-oriented
simulations [18].

There has been an effort to integrate UML/SysML
and Modelica to provide support for modeling and
simulating continuous dynamics [23]. The UML profile
called ModelicaML enables users to depict a Mode-
lica simulation model graphically alongside UML/
SysML information models. The ModelicaML profile
reuses several UML and SysML constructs, and also
introduces new language constructs to specify equa-
tions. Similar work has been done for UML and Simu-
link [21]. None of these approaches uses physical
components and their interconnections, however, to
capture the physical interactions between system
components and the emergent dynamic behavior.

Rather than developing a universal modeling syntax
and semantics or a meta-modeling framework for
translating models between tools, our approach is to
relate models and verification results at the architec-
tural level, a level of abstraction that captures the
structure of the system without attempting to compre-

hend all of the details of any particular modeling
formalism.

3. Need for physical architectural concepts

Although architectural modeling has been used in
limited ways to support the incorporation of physical
elements as components [6], it currently does not
have adequate ways of placing cyber and physical
elements on the same footing. This is because soft-
ware architectures have an impoverished vocabulary
for the types of physical components found in cyber-
physical systems, the interconnections that deter-
mine the interactions between physical components
and between cyber components, and the behaviors
of physical entities.

Figure 1 shows an AADL representation of a flight
computer interfacing with a landing gear [20]. Each
component represents an AADL thread, with inter-
connections representing the communication of
events or data. The Landing_Gear thread defines
the behavior of the physical subsystem in terms of
the events generated in response to pilot com-
mands. This architectural description of the landing
gear does not go beyond defining the data/signal
interface of the controller to the sensors and actua-
tors of the plant. The AADL component view of the
gear resembles a black box for the system designer.
There is no information about how the gear’s sub-
systems are physically interconnected, or any repre-
sentation of the controller’s assumptions about the
landing gear’s overall dynamic behavior.

Figure 1. AADL description of aircraft landing gear.

This lack of physical detail is typical in current ADLs
that target embedded real-time systems. Another
example (from TELECOM ParisTech) is a flight con-
troller for an F14 aircraft [17], which deals with map-
ping Simulink models into AADL components. A
more comprehensive representation of the physical
architecture of the aircraft would give designers the

 Page 3

ability to easily map models for the aircraft dynamics
(in multiple formalisms) into the corresponding physi-
cal components and connectors that describe the
aircraft architecture. For example, the detailed Simu-
link/Modelica models for the aileron, flaps, and rudder
could be associated with actuator components in the
aircraft architecture. A similar mapping to physical
domain components could be done for dynamic mod-
els of the sensors, the aircraft frame (mechanical),
and engine system (fluid, thermal). This approach
would help the design team to store the physical
modeling information about the system from multiple
tools along with component specifications from the
cyber domain, in a single, unified framework. It would
also give the system engineer the flexibility to explore
design alternatives for the various avionic subsys-
tems.

Another important consequence of incorporating the
physical subsystems into the architecture is the ability
to assess design trade-offs across the cyber-physical
boundary. One could envision replacing a particular
sensor with another having a better resolution/range,
but with greater weight/cost. To study the system-
wide effect of this change, one could analyse the
performance to weight tradeoffs on the combined
software and physical aircraft systems. Several rele-
vant questions could be answered. For example,
does the change impact the data rate of the commu-
nication channel between the high resolution sensor
and the controller? Will the scheduling of the current
task set still be valid with more information to process
per sensor update cycle? Which would give better
control performance: a better sensor with a simpler
control algorithm or a less costly sensor with a mem-
ory- and processor-intensive controller? The answers
to such questions involve choices in both the cyber
and physical worlds, including the couplings between
the two domains. Having a unified CPS architectural
framework can decrease the lead-time to develop
several ready-to-use architectures of the aircraft
model, with different levels of detail, so that the engi-
neers can investigate many more design alternatives
with a high level of accuracy of the analysis, thus
minimizing the risks of costly “design-build-test-fix”
cycles.

A third benefit concerns the relationships between the
multiple heterogeneous models utilized in the design
and verification of a complex cyber-physical system.
The exchange of information, assumptions, and in-
ferences among the many groups of engineers in-
volved is typically informal at best, and it is particu-
larly difficult when the structure and semantics of the
modeling formalisms differ significantly. Conse-
quently, correctness of the design is inferred by a
combination of engineering judgment supported by
extensive testing of the final system. There is a need
to develop an architectural formalism with structural

and semantic annotations that can represent both
cyber and physical system-level requirements and
specifications along with the assumptions and impli-
cations associated with the many verification models
developed for the system. The proposed CPS archi-
tectural style provides the reference context for mak-
ing meaningful associations across the disparate
models used for analysis and verification.

4. CPS Architectural Style

We use the Acme ADL [5], which has strong support
for defining extensible architectural styles. In Acme,
an architectural style is represented as a family of
element types that adhere to rules governing what
kind of components and connectors can be present
in the system and the manner in which they can be
connected. A general style can be refined into an
application-specific style by extending existing types
and adding additional element types and rules.

The challenge in defining an architectural style for
cyber-physical systems is to strike a balance be-
tween specificity and generality. We focus on em-
bedded monitoring and control systems. Our goal is
to create a family of general components and con-
nectors that can serve as the foundation for applica-
tion-specific styles in this broad domain. Towards
this end we define the following three related families
pertaining to the cyber domain, the physical domain,
and their interconnection. The goal of creating the
CPS architectural style is to provide a representative
set of components and connectors that can be ex-
tended to full implementations in targeted application
frameworks.

4.1 Cyber family
The cyber side of CPS is the traditional domain for
ADLs and provides support for standard real-time
monitoring and control applications. The cyber com-
ponents are:
Data Stores: These components store data as an
interface between the computational elements in the
system. In simple systems, these could be just pas-
sive memory blocks. In complex systems there could
be further details specifying what components can
read and write to the data store components.
Computation: Computation components operate on
and update data posted in data store components.
This includes components that perform filtering, state
estimation, and control.
IO Interfaces: These components perform the com-
putations and timing functions required to sense and
control the physical world. This would include, for
example, smart sensor software that processes raw
sensor data.

 Page 4

In addition to the computational aspects of the soft-
ware, it is important to represent the communication
elements in the system to reason about timing be-
tween software elements and how this affects the
physical behavior of the complete system. We repre-
sent two major types of cyber connectors, a call-
return connector, representing one-to-one communi-
cation and a publish-subscribe connector for one-to-
many communication.

The communication mechanism could be event-
based, synchronous or asynchronous, and is speci-
fied in the role defined for each connector. Further-
more, each connector type can be refined further,
based on the communication semantics of the inter-
acting components. For example, the publish-
subscribe connector could be elaborated to define
communication between CORBA components.

4.2 Physical family
There are several challenges in developing a suitable
architectural representation of the physical side of
cyber-physical systems. Architectural models should
not have all the details required for a full simulation of
the physical dynamics. At the same time, the archi-
tectural components and connectors should corre-
spond to intuitive notions of physical dynamics in the
same way cyber components and connectors corre-
spond to elements of computational systems. To
achieve this balance, we introduce components and
connectors based on an energy view of physical sys-
tems. This provides a domain-independent perspec-
tive, including the ability to represent interactions
between different physical domains and the possibil-
ity to specify system properties such as power flow
and causality. This is similar to the perspectives tak-
en in bond graphs [8] and Lagrangian mechanics
[12], where power-conjugated variables (effort and
flow) describe signal flows between sources, energy
storage elements, and dissipative elements.

The physical family is an architectural style to model
multi-domain physical systems. When two or more
components from the physical family are connected,
the implication is that they exchange energy in some
way. The ports of each physical component define its
effort and flow variables. The product of this “power
conjugate” pair equals generalized power in the phys-
ical domain of interest. Power flowing into a compo-
nent is defined as positive. This is analogous to posi-
tive mechanical work being defined as work done by
the applied force on the component. A component’s
constitutive equations (attached as behavior annota-
tions) define the relationships between the port vari-
ables and the internal state variables. Each physical
domain extends the basic port type by defining effort
and flow variable types relevant to that domain, along
with their units and ranges of acceptable values. For
example, an electrical physical port would define

voltage and current as the conjugate variables for
electrical components. There would be two (or more)
ports for each generic electrical component. The
voltage across the component and the current
through it (along with either charge or flux as the
stored quantity) would be defined in terms of the
conjugate variables at the electrical ports.

A connector (along with its roles) defines the rela-
tionship between the effort and flow pairs of all the
components that are attached to the connector. The
connectors constrain the form of energy exchange
between the components by enforcing the laws of
conservation of the respective physical quantities at
all times. For example, an electrical connector’s
semantics would enforce Kirchhoff’s current and
voltage laws between the conjugate variables of its
connected components.

The physical component types are:
Energy sources: A source component delivers con-
stant effort (or flow) to other components, regardless
of the load presented to it. This is analogous to an
ideal voltage (or current) source. Because of the
defined direction of power, such components will
have negative flow as long as they are supplying
power to other components. A source behaves like
an energy sink when it consumes power from its
surroundings. An example is a rechargeable battery
component in charging mode.
Energy storage: An energy storage component
models dynamic elements or subsystems that store
energy, such as components that have capacitive
and inductive properties in electrical systems. Ports
on these components allow power transfer to other
subsystems.
Dissipative components: These model physical ele-
ments that lose energy over time. They correspond
to resistors in electrical circuits and dampers or fric-
tion losses in mechanical systems. Power losses can
take place in complex ways within physical compo-
nents. Hence, the semantics of a dissipative compo-
nent is completely defined by its energy loss func-
tion, which describes the relationship between the
effort and flow variables of all its connected ports.
Physical transducers: Transducers represent power
transfer or energy conversion between different
types of physical domains. These components are
particularly useful in modeling multi-domain systems
with, for example, electromechanical devices that
transform energy between the electrical and me-
chanical domains. Transducers contain at least one
port from each of the physical domains they inter-
connect.

The physical connector types are:
Equal effort: The constraints on the power conjugate
variables of the component ports coupled with this

 Page 5

connector are: (1) the effort variables of all connected
ports are equal; and (2) the sum of the flow variables
of all connected ports is zero. This connector repre-
sents the application of Kirchoff’s laws in the electri-
cal domain and force/moment balance laws in the
mechanical domain to coupled components.
Equal variable: This connector indicates that the vari-
ables at the ports of the components are identical.
There is no directionality associated with this connec-
tor.
Measurement: Measurement connectors indicate
conjugate variables that are determined by one phys-
ical component and used as an input in another phys-
ical component. Thus, these connectors are direc-
tional and correspond to connections in traditional
block diagrams (e.g., signal lines in Simulink).

4.3 Cyber-physical interface family
We define the cyber-physical family to bridge be-
tween the cyber and the physical worlds. The follow-
ing elements of the cyber-physical interface (CPI)
family represent connections between computational
and physical systems:
CPI components: cyber-to-physical (C2P)/physical-to-
cyber (P2C) transducers;
CPI connectors: cyber-to-physical/physical-to-cyber
translators.

The difference between CPI components and CPI
connectors is a matter of detail and sophistication in
the interface. An intelligent sensor that performs sig-
nal processing functions might be represented as a
CPI component, whereas a simple digital thermome-
ter could be represented as a CPI connector.

Together, the three generic families can be combined
to and extended to provide a unified model of a cy-
ber-physical system. The generic CPS component
and connector types can be used to define new fami-
lies with application-specific features and attributes.
For example, the physical family can be specialized
to the translational/rotational mechanical domain by
creating physical ports that define velocity/ angular
velocity as effort variables and force/torque as flow
variables. The source components become
force/torque and velocity/angular velocity sources,
respectively. Mass and moment of inertia (MI) corre-
spond to energy storage elements. They represent
the ability of a material body to store kinetic and po-
tential energy. The energy storage concept can be
generalized to a rigid body component, which con-
tains both mass (annotated with the centre of gravity
(CG) coordinates) and MI as subcomponents. The
rigid body also contains body coordinate frames and
transformations between them as annotated proper-
ties. Dissipative components reflect phenomena
where mechanical energy is lost over time, such as
static friction and viscous damping.

We can define three mechanical connectors, corre-
sponding to the three physical connector base types.
For example, an equal velocity connector defines a
mechanical coupling between two or more compo-
nents which constraints them to move with the same
velocity in the given frame of reference, while the
joint forces sum to zero. Equal variable connectors
equate the force and velocities of the connected
components, while measurement mechanical con-
nectors can be used to interface force (torque) and
velocity sensors to rigid body components.

5. Example: STARMAC Quadrotor

The Stanford Testbed of Autonomous Rotorcraft for
Multi-Agent Control (STARMAC) [22], a fleet of qua-
drotor helicopters, has been developed as a test bed
for novel algorithms that enable autonomous opera-
tion of aerial vehicles. As shown in Figure 2, the
vehicle has four rotors, arranged symmetrically
about its body frame. The rotors are powered by
lightweight, brushless DC motors, which result in a
thrust of 8 N per rotor.

Figure 2. The STARMAC quadrotor [22].

The hardware configuration of the STARMAC is
shown in Figure 3. The vehicle is equipped with
three separate sensors for full state estimation. A
Microstrain 3DMG-X1 inertial measurement unit
(IMU) provides three-axis attitude, attitude rate and
acceleration, through a built-in estimation algorithm
that relies on three gyroscopes, three accelerome-
ters and three magnetometers. Height above the
ground is determined using a sonic ranging sensor,
either the Devantech SRF08 or the Senscomp Mini-
AE with 3 to 5 cm accuracy. Three-dimensional posi-
tion and velocity measurements are made using
differential GPS relying on the Novatel Superstar II
GPS unit. This unit outputs raw measurements at 10
Hz and the resulting position accuracy is 1 to 2 cm
relative to a stationary base station. An onboard
extended Kalman filter is used to combine GPS and
raw inertial measurements for accurate full-state
estimation. Computation and control are managed
at two separate levels. The low-level attitude control,
which performs real-time control loop execution and
outputs PWM motor commands, occurs on a Robos-
tix microcontroller based on the Atmega 128 proces-
sor. The high level planning, estimation and control

 Page 6

occurs on either a lightweight Gumstix running em-
bedded Linux on a PXA270 microprocessor, or on an
Advanced Digital Logic ADL855 PC104 running Kub-
untu Linux.

Figure 3. Quadrotor hardware architecture [22].

The Gumstix (0.05 kg) provides sufficient computa-
tional resources for carrier-phase differential GPS
calculations and can be used to perform autonomous
position control without the ability to add additional
coordination algorithms between vehicles. As an al-
ternative, the PC104 (0.48 kg) provides a wealth of
computation power, at the cost of additional weight
and hence, shortened flight times. The Robostix and
Gumstix/PC104 communicate via a 115 kbaud RS-
232 (serial) link. Communications between the high-
level computers and the ground station are managed
through UDP over a WiFi network. The Gumstix uses
802.11b, and the PC104 uses 802.11g.

The ground station controller (GSC) is a high-level
motion planner and coordinator for the quadrotor. It
generates reference trajectories for the quadrotor to
follow, displays telemetry data received from the ve-
hicle, and manages coordination among multiple
aircraft. The ground station also has joysticks for
control-augmented manual flight, when desired. With
reference to Figure 4, we see that the nonlinear dy-
namics of the quadrotor helicopter are those of a
point mass m with moment of inertia 3 3

bI R ×∈ , loca-

tion 3Rρ ∈ in inertial space, and angular velocity
3Rω∈ in the body frame. The vehicle undergoes

forces 3F R∈ in the inertial frame and moments
3M R∈ in the body frame, yielding the equations of

motion,

where bD is the aerodynamic drag force, and g is

the acceleration due to gravity. ,jR IR and ,jR BR are

the rotation matrices from the plane of rotor j to the
inertial coordinates and the body coordinates, re-
spectively. One of our objectives is to formally repre-
sent such dynamic behavior in the CPS architecture
for the quadrotor system.

Figure 4. Quadrotor free body diagram [22].

6. Quadrotor architecture in the CPS style

Figure 5 illustrates the use of the CPS style to model
the quadrotor in AcmeStudio. On the cyber side,
each controller (attitude, position, and GSC) is
mapped to a separate computation component that
implements the control algorithm. The communica-
tion of setpoints from a higher-layer controller to a
lower-layer controller is modeled as a send-receive
connector. The periodic relaying of vehicle state from
the lower control layer to the higher layer is modeled
as a publish-subscribe connector. This illustrates the
use of distinct connector types to represent different
communication patterns between the same compo-
nents. Since there is no direct communication chan-
nel between the attitude controller and the ground
station, no connector exists between them.

The vehicle frame is modelled as a rigid-body com-
ponent, whose mass and MI are affected by the
forces and moments acting at its ports, according to
the dynamic equations of the quadrotor. The vehicle
frame is annotated with the body and inertial refer-
ence frames along with the ,jR IR and ,jR BR trans-

formations. Each rotor and motor actuator is mod-
eled as a single electromechanical transducer called
Act, containing an electrical port and two mechanical
ports, one each for the translational and rotational
domains. The component models the conversion of
input motor voltage to an output thrust (force) and
torque acting on VehicleFrame. As we refine the
architecture, this composite component can have

4

,
1

,

()

(())

j j

j j

b v D j R I R
j

j bf j j j R B R

F D e mge T R z

M M M r T R z

=

= − + + −

= + + × −

∑

∑

http://www.kxcad.net/cae_MATLAB/toolbox/physmod/mech/bqjrhbx.html#f6-6803

 Page 7

sub-structure, where the motor and rotor are separate
components, with a torque connector between them.
Each Act is connected to the VehicleFrame by two
equal velocity connectors, one for force balance and
one for moment balance. This models the action and
reaction phenomenon between each rotor assembly
and the vehicle frame.

Figure 5. Quadrotor CPS architecture.

The drag force is described as a dissipative compo-
nent, whose magnitude depends on the wind velocity
and the aircraft velocity, among other parameters.
The complex empirical relationship of drag force to
the velocities at its ports is annotated as a behavior
property of the component. Gravitational force is
modeled as a flow source component, since it exerts
a constant force on the airframe. It is connected to
the vehicle frame by a measurement connector.

The IMU and GPS are both modeled as P2C trans-
ducers, since they perform filtering on their raw sen-
sor readings. On the cyber side, they are connected
to their respective controllers by publish-subscribe
cyber connectors, since these sensors send periodic
streams of data to the controllers. On the physical
side, they are connected by measurement connectors
to the vehicle frame. The sonar sensor is modeled as
a simple P2C connector, going from the vehicle frame
to the attitude controller. The connector is annotated
with sonar parameters including detection beam
width, effective range, and resolution. Each Act
component is sent actuation commands from the
attitude controller through C2P connectors, repre-
senting the conversion of cyber commands to voltage
(PWM signals) for each motor.

7. Models as architectural views

In virtually all verification tools, models are con-
structed as collections of interacting components or
modules. Thus, each verification model has a struc-
ture that can be viewed as an architecture with syn-
tax and semantics defined by the particular formal-
ism underlying the design of the tool. From a struc-
tural perspective, an architectural view supports the
description of a derived architectural model to ab-
stract over details that are irrelevant for a particular
analysis. The relationships between components in
the structure of a verification model and components
in the CPS architecture will not generally be one-to-
one, however. Current tools do not provide insights
into the relationships between architectural views.
This represents a problem for architectural modeling,
since it is generally impossible to understand how
design decisions or analyses in one view impact
those of another.

The approach proposed here focuses specifically on
component-and-connector views representing the
architectures of verification models as abstractions
of a shared more-detailed baseline architecture. In
this context, well-defined mappings between a view
and the full architectural description can be used as
the basis for identifying and managing the depend-
encies among the architectural views and to evalu-
ate mutually constraining design choices. The full
baseline architecture thus becomes the repository
for retaining results from various analyses and de-
signs so that the interdependencies are explicit. The
rest of this section describes how an architect can
represent two different models of the quadrotor sys-
tem as distinct architectural views.

7.1 Data flow view
From a control engineer’s perspective, the quadrotor
system can be viewed as a data flow (Simulink)
model, as shown in Figure 6. The position and atti-
tude controller components in this architectural view
are represented by the robostix and gumstix subsys-
tems in the Simulink model. The vehicle dynamics
are represented by the starmac_dynamics block,
and the GPS sensor is defined by the Superstar_II
block. If each of these Simulink blocks could be
mapped to a component type in a new ‘data flow’
architectural style, then the Simulink model could be
thought of as an architecture instance in its own
right. The component and connector semantics for
this architectural style come from the underlying data
flow semantics of the Simulink metamodel. With
such a mapping defined, one can ask how the data
flow architecture is related structurally and semanti-
cally to the underlying quadrotor CPS architecture.

The data flow view focuses on the control perform-
ance of the quadrotor and typically ignores controller

 Page 8

implementation details such as scheduling of tasks
and associated communication jitter and delays. In
particular, it assumes lossless communication be-
tween the GSC and the position controller onboard
the quadrotor. However, in the implemented system,
the two controllers communicate via a lossy wireless
network. To analyze how the quality of the communi-
cation channel affects the temporal assumptions of
the controllers, the designer would have to create a
detailed simulation of the network in Simulink model.
However, this class of behaviors could be analyzed
fairly easily in a process algebra perspective of the
system, as shown in the following section.

Figure 6. Quadrotor Simulink model[22].

7.2 Process algebra view
Finite State Processes (FSP) [13] is a process alge-
bra in the tradition of CSP [27], where behavior is
modeled in terms of event patterns, called processes
that denote sets of traces. Each event in a trace
represents a discrete transition of a system. Patterns
are built up out of operators that indicate the occur-
rences of events, sequencing of events, choice, and
parallel composition. Parallel processes synchronize
on shared events, which can also be used to pass
values between processes. In general, FSP captures
the behavior of cyber elements fairly well, while phys-
ical elements are described by abstracting away their
continuous dynamics. The components in an FSP
architectural view are those entities whose behavior
can be described by an FSP primitive process. A
connector between two FSP components signifies
that the two processes interact with each other
through events and describes the protocol for that
interaction.

The FSP architecture view of the quadrotor currently
abstracts over the dynamics of the quadrotor and
focuses on the communication between the ground
station and position controller components. The qua-
drotor system is a composition of the two FSP com-
ponents in which the GSC sends a single position

command to the PC after it gets a command from
the user to move the Rotor to a location. The PC
continuously provides position status information
back to the GSC. It is assumed that the PC controls
the rotor assembly reliably so that if it is told to move
the rotor to a given position, it will do so. This is an
assumption that would be verified with other more-
detailed models of that part of the system, probably
in a different modeling formalism.

 Figure 7. FSP specifications for quadrotor.

Each component of interest in the architectural view
is annotated with a process of the FSP specification
in Figure 7 (e.g., the Gnd_Station component of the
CPS architecture is annoted with the GroundStation
process). The connectors between Gnd_Station and
Position_Ctrl are modeled with one or the other of
the connector behaviors. Having alternative connec-
tor protocols allows us to compare the behavior of
the overall system depending on the protocol of the
connection: a lossy connector might represent a

// Ground Station

GroundStation = GS[0][0][False],

 GS[actual:POS][desired:POS][sent:BOOL] = (

 getNewPos[newPos:POS] -> GS[actual][newPos][False]

 | at[newPos:POS] -> GS[newPos][desired][sent]

 | when (actual!=desired && !sent) sendCmd[desired]

 -> GS[actual][desired][True]

).

// Position Controller

PositionController = PS[0][0],

 PS[actual:POS][desired:POS] = (

 goTo[newPos:POS] -> PS[actual][newPos]

 | when (actual != desired) controlRotors

 -> PS[desired][desired]

 | curPos[actual] -> PS[actual][desired]

).

// Connectors

//Lossy connector

MsgConnLossy = (getMsg[val:VAL] -> DeliverMsg[val]),

 DeliverMsg[val:VAL] = (

 try -> putMsg[val] -> MsgConnLossy

 | try -> MsgConnLossy).

//Lossy connector with retry

MsgConnRetry = (getMsg[val:VAL] -> DeliverMsg[val]),

 DeliverMsg[val:VAL] = (

 try -> putMsg[val] -> MsgConnRetry

 | try -> DeliverMsg[val]).

// System with lossy connector

||QuadRotorL = (GroundStation || PositionController

 || cmd:MsgConnLossy || status:MsgConnLossy)

 /{sendCmd/cmd.getMsg, goTo/cmd.putMsg,

 curPos/status.getMsg, at/status.putMsg}.

// System with retry connector

||QuadRotorR = (GroundStation || PositionController

 || cmd:MsgConnRetry || status:MsgConnRetry)

 /{sendCmd/cmd.getMsg, goTo/cmd.putMsg,

 curPos/status.getMsg, at/status.putMsg}.

// Condition to check

assert CorrectControl =

 [](forall[p:POS] (getNewPos[p] -> <> at[p]))

 Page 9

wireless UDP link while a lossy connector with retry
might model a wireless TCP. The architecture can
then be used to yield the complete FSP specification
shown in Figure 7.

The property to be checked is the following: if the
user tells the GSC to move the rotor to a particular
position (abstracted as either position 0 or position 1),
the GSC will eventually receive a status message
from the PC that it is at that location. This FSP speci-
fication is analyzed by the Labelled Transition System
Analyser [13] tool. The analysis tells us that the prop-
erty holds when retrying connector is used, but fails
when the lossy connector is used. This illustrates how
a system designer might compare design tradeoffs in
the cyber world between different protocols of interac-
tion between GSC and PC.

8. Behavioural annotations and analyses

The architectural elements describe only the struc-
tural information about a system. To be able to do
meaningful formal analysis on the system behavior,
one must annotate the architecture with behavioral
information. In Acme ADL, the behavioral annotation
can be implemented via properties to capture the
behavioral information. We have implemented the
annotations for two types of behavioral modeling
frameworks: FSP and Linear Hybrid Automata (LHA)
[9]. We have developed plug-ins as extension points
of AcmeStudio, which will display only the relevant
information pertaining to the element or system se-
lected by the user. We have also built into the plugins
the ability to generate analyzable text files from these
properties. The plug-ins traverse the architecture,
gather the relevant information distributed through out
the structure and generate a text file that is analyzed
by the relevant tool. Figure 8 shows a schematic of
this analysis flow. Currently, there exists one plug-in
for FSP that generates a file that can be analyzed by
LTSA and another plug-in for LHA that generates a
file that can be analyzed by Polyhedral Hybrid Auto-
maton Verifier (PHAVer) [7].

Because of the flexible development environment in
AcmeStudio, a system designer can create a custom
plugin for each of the formalisms used to model the
system. Architectural elements are then annotated
with properties relevant to each formalism. Figure 9
shows an LHA plugin being used to display annota-
tions for each architectural element in an LHA view of
a heating control system. The plugin framework is
leveraged to generate analyses results from the het-
erogeneous behavioral annotations, and the results
can be combined together or studied separately.
Thus, the CPS architectural style along with these
analysis tools provides a unifying framework to de-
velop new methods for optimizing designs with re-

spect to performance measures that characterize
important features of the system behaviors.

Figure 8. Behavioral analysis using plugins.

Figure 9. LHA annotations in AcmeStudio.

9. Conclusion

This paper presents a presents a way to augment
architectural descriptions with physical elements.
The CPS architecture style provides a set of compo-
nents and connectors for developing a complete
architectural description of systems involving both
cyber and physical elements. The CPS architecture
becomes a frame of reference for multiple architec-
tural views of a system corresponding to different
modeling formalisms.

There are several directions for further research and
development. In the current implementation, the

 Page 10

architectural views are connected to the detailed CPS
architecture through hierarchical Acme representa-
tions that identify the relationships between compo-
nents and connectors in each view with the compo-
nents and connectors in the CPS architecture. Acme
does not currently support resolution of inter-view
correspondences, however, so further work is needed
both in theory and tool support to formalize and ana-
lyze issues of consistency and completeness of vari-
ous architectural views. Currently, the analysis
plugins rely on external analysis tools to present re-
sults. A key usability issue is to provide the results in
the context of the architectural view from which they
originated, and this is ongoing implementation work.
Such tools would provide a unified context to explore
design alternatives that cut across the boundaries
that currently separate the methodologies that focus
on either the cyber or physical elements of cyber-
physical systems.

10. Acknowledgments

The authors thank F. Murray Fishbeck for his help
with the development of the STARMAC example.
This work was supported in part by National Science
Foundation (NSF) under grant no. CNS0834701 and
by U.S. Air Force Office of Scientific Research
(AFOSR) under contract no. FA9550-06-1-0312.

11. References
[1] SysML Home Page. http://www.sysml.org/
[2] R. Allen and D. Garlan. A formal basis for architectural

connection. ACM Trans. On Software Engineering Me-
thodology (TOSEM), July 1997.

[3] Clements P. Bass, L. and R. Kazman. Software Archi-
tecture in Practice. Addison-Wesley, second edition,
2003.

[4] P. Binns and S. Vestal. Formal real-time architecture
specification and analysis. In 10th IEEE Workshop on
Real-Time Operating Systems and Software, May
1993.

[5] R. T. Monroe, D. Garlan, and D. Wile. Foundations of
Component-Based Systems, chapter ACME: Architec-
tural Description of Component-Based Systems, pages
47-68. Cambridge University Press, 2000.

[6] Reeves G., Sacks A., Dvorak D., and Rasmussen R.
Software architecture themes in JPL’s mission data
system. In AIAA Space Technology Conference and
Expo, Albuquerque, NM, 1999.

[7] G. Frehse. Proceedings of the fifth International work-
shop on hybrid systems: Computation and control
(HSCC), 2005.

[8] P. Gawthorp. Bond Graphs and Dynamic Systems.
Prentice Hall, 1996.

[9] T. A. Henzinger. The theory of hybrid automata. In 11th
Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS'96), pages 278-292, New Brunswick, New
Jersey, 1996.

[10] J. Hudak and P. Feiler. Developing AADL models for
control systems: A practitioner's guide. Technical Re-
port Technical Report CMU/SEI-2007-TR-014, Soft-

ware Engineering Institute, Carnegie Mellon Univer-
sity, 2006.

[11] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language Reference Manual, Second Edi-
tion. Addison Wesley, 2004.

[12] D. Jeltsema and J.M.A. Scherpen. Multidomain
modeling of nonlinear networks and systems. Control

 Systems Magazine, Aug. 2009.
[13] J. Magee and J. Kramer. Concurrency: State Models

and Java Programming, Second Edition. Wiley, 2006.
[14] M. Moriconi and R.A. Reimenschneider. Introduction

to SADL 1.0: a language for specifying software archi-
tecture hierarchies. Technical Report SRI-CSL-97-01,
SRI International, 1997.

[15] N. Medvidovic and R.N Taylor. A classification and
comparison framework for software architecture de-
scription languages. IEEE Transactions on Software
Engineering, 26(1):70-93, 2000.

[16] D. P. Gluch P. H. Feiler and J. J. Hudak. The Archi-
tecture Analysis and Design language (AADL):

 An introduction. Technical Report CMU/SEI-2006-TN-
011, Software Engineering Institute, Carnegie Mellon
University, February 2006.

[17]http://csse.usc.edu/csse/event2009/AADL/presentation
/09_02_02-SAE_AADL-Simulink.pdf

[18] Simscape from Mathworks.
http://www.mathworks.com/products/simscape/

[19] G. Verzichelli. Development of an Aircraft and Land-
ing Gears Model with Steering System in Modelica-
Dymola. Modelica 2008.

[20] M. Chkouri, A. Robert, M. Bozga, and J. Sifakis.
Translating AADL into BIP - Application to the Verifi-
cation of Real-time Systems. In Proceeding of Model
Based Architecting and Construction of Embedded
Systems, 2008.

[21] J. Shi. Combined usage of UML and Simulink in the
design of embedded systems: Investigating Scenarios
and Structural and Behavioral Mapping. 4th work-
shop of Object-oriented Modeling of Embedded Real-
time Systems, Paderborn, Germany, Oct. 2007.

[22] G. Hoffman, S. Waslander, and C. Tomlin, Quadrotor
Helicopter Trajectory Tracking Control. Proc. of the
AIAA Guidance, Navigation, and Control Conference,
2008.

[23] T. Johnson. Integrating models and simulations of
continuous dynamics into SysML. Proc. of the 6th In-
ternational Modelica Conference, 2008.

[24] Modelica Association. http://www.modelica.org/
[25] MapleSim from Maplesoft.

http://www.maplesoft.com/products/maplesim/
[26] http://eve.enst.fr/aadl/wiki/CaseStudySimulink
[27] C. Hoare. Communicating Sequential Processes.

Prentice Hall, 1985.

http://www.mathworks.com/products/simscape/
http://www.modelica.org/
http://eve.enst.fr/aadl/wiki/CaseStudySimulink

