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Abstract: This paper presents an extension of exist-
ing software architecture tools to model physical sys-
tems, their interconnections, and the interactions 
between physical and cyber components. We intro-
duce a new cyber-physical system (CPS) architec-
tural style to support the construction of architectural 
descriptions of complete systems and to serve as the 
reference context for analysis and evaluation of de-
sign alternatives using existing model-based tools. 
The implementation of the CPS architectural style in 
AcmeStudio includes behavioral annotations on com-
ponents and connectors using either finite state proc-
esses (FSP) or linear hybrid automata (LHA) with 
plug-ins to perform behavior analysis. The application 
of the CPS architectural style is illustrated for the 
STARMAC quadrotor. 
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1. Introduction 

Today’s models and methods for analysis and design 
of embedded control systems are typically frag-
mented along lines defined by disparate mathemati-
cal formalisms and dissimilar methodologies in engi-
neering and computer science. While separation of 
concerns is needed for tractability, such analytical 
approaches often impose an early separation be-
tween the cyber and physical features of the system 
design, making it difficult to assess the impacts and 
tradeoffs of alternatives that cut across the bounda-
ries between these domains. This paper concerns 
extensions of software architectures to include the 
physical elements of embedded control systems. 
 
Architectures typically represent systems at a higher 
level than simulation models, which represent the 
details of a particular system implementation. Al-
though architectural modeling has been used in spe-
cific domains to incorporate physical elements as 
components, there is currently no way of treating 
cyber and physical elements equally in a general 
fashion. This is because the vocabulary is inadequate 
for representing physical components and their inter-
actions with computational elements in embedded 
control systems and other cyber-physical systems 
(CPS). Our goal is to create a CPS architectural style 
as a comprehensive framework for using diverse 

models and tools for analysis and design of cyber-
physical systems. 
 
As a system is being designed, engineers typically 
want to expose some aspects of a system while 
abstracting away details of other aspects of the sys-
tem. From an architectural perspective, when the 
system is modeled for analysis using a particular 
formalism, the model typically reflects a structural 
view of the system that differs from the detailed ar-
chitecture in some respects. In some cases, one 
may even want to use a different architectural style 
to represent an analysis or simulation model in terms 
of components and connectors. This leads to the 
need to support different architectural views of the 
modeled system. In this paper the relationships of 
heterogeneous models to the CPS architecture are 
developed by formalizing the structure of each model 
as an architecture in its own right, which is then as-
sociated to the CPS architecture as a particular view 
of the system. 
 
The following section describes related work in this 
area. Section 3 motivates the need for a unifying 
framework augmented with physical components 
and multiple system views. Section 4 introduces the 
CPS architectural style. Section 5 describes an ex-
ample quadrotor system whose architectural descrip-
tion in the CPS style in presented in Section 6. Sec-
tion 7 presents two models of the quadrotor in differ-
ent formalisms as architectural views. Section 8 
outlines how analyses can be carried out using ap-
propriate plugins in the architecture design tool Ac-
meStudio. Section 9 summarizes the contributions of 
this paper and discusses directions for future work. 

2. Related Work 

Over the past decade software architecture has 
emerged as one of the primary techniques for disci-
plined engineering of large-scale software systems. 
Software architecture typically models a system as a 
graph of components and connectors in which the 
components represent principal computational ele-
ments of a system's run-time structure and the con-
nectors represent the pathways of communication 
between components [2]. These elements are anno-
tated with properties that characterize their abstract 
behavior and facilitate reasoning about system-level 
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design tradeoffs. There has been considerable re-
search and development in Architecture Description 
Languages (ADLs) and tools to support their analysis 
and realization as code [13]. Standardized notations 
such as UML 2.0 [11], SysML [1] and AADL [10] pro-
vide modeling vocabularies of components, connec-
tors and properties. These notations are supported by 
tools that provide graphical editing and viewing, hier-
archical development [14], checking for component 
compatibility or substitutability [2], and evaluation of 
quality attributes such as performance, reliability, and 
security. Software architectures also support reuse of 
design expertise and code infrastructure and have 
been used effectively for a number of embedded 
control applications [4, 10]. 
 
There are also a number of tools for modeling and 
simulating physical systems. For example, Modelica 
is a popular object-oriented, open-standard language 
for constructing component-based models of physical 
systems [24]. MapleSim is a tool for developing mod-
els of physical systems and generating efficient code 
for real-time simulations, particularly for hardware-in-
the-loop testing [25]. In contrast to the signal flow 
semantics used in control system modeling, composi-
tions of physical systems are most naturally modeled 
using acausal connections, which are symmetric re-
action relations for which the directionality of interac-
tion flows is determined by the internal state of the 
interconnected components. Making connections 
between physical modeling tools and control-oriented 
modeling frameworks has become an important goal 
for model-based development (MBD), particularly for 
avionics systems [19]. MathWorks has introduced 
Simscape, a textual MATLAB-based modeling lan-
guage and Simulink block set that makes it possible 
to integrate physical models with control-oriented 
simulations [18]. 
 
There has been an effort to integrate UML/SysML 
and Modelica to provide support for modeling and 
simulating continuous dynamics [23]. The UML profile 
called ModelicaML enables users to depict a Mode-
lica simulation model graphically alongside UML/ 
SysML information models. The ModelicaML profile 
reuses several UML and SysML constructs, and also 
introduces new language constructs to specify equa-
tions. Similar work has been done for UML and Simu-
link [21]. None of these approaches uses physical 
components and their interconnections, however, to 
capture the physical interactions between system 
components and the emergent dynamic behavior. 
 
Rather than developing a universal modeling syntax 
and semantics or a meta-modeling framework for 
translating models between tools, our approach is to 
relate models and verification results at the architec-
tural level, a level of abstraction that captures the 
structure of the system without attempting to compre-

hend all of the details of any particular modeling 
formalism.  

3. Need for physical architectural concepts 

Although architectural modeling has been used in 
limited ways to support the incorporation of physical 
elements as components [6], it currently does not 
have adequate ways of placing cyber and physical 
elements on the same footing. This is because soft-
ware architectures have an impoverished vocabulary 
for the types of physical components found in cyber-
physical systems, the interconnections that deter-
mine the interactions between physical components 
and between cyber components, and the behaviors 
of physical entities. 
 
Figure 1 shows an AADL representation of a flight 
computer interfacing with a landing gear [20]. Each 
component represents an AADL thread, with inter-
connections representing the communication of 
events or data. The Landing_Gear thread defines 
the behavior of the physical subsystem in terms of 
the events generated in response to pilot com-
mands. This architectural description of the landing 
gear does not go beyond defining the data/signal 
interface of the controller to the sensors and actua-
tors of the plant. The AADL component view of the 
gear resembles a black box for the system designer. 
There is no information about how the gear’s sub-
systems are physically interconnected, or any repre-
sentation of the controller’s assumptions about the 
landing gear’s overall dynamic behavior. 
 

 
Figure 1. AADL description of aircraft landing gear. 

 
This lack of physical detail is typical in current ADLs 
that target embedded real-time systems. Another 
example (from TELECOM ParisTech) is a flight con-
troller for an F14 aircraft [17], which deals with map-
ping Simulink models into AADL components. A 
more comprehensive representation of the physical 
architecture of the aircraft would give designers the 
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ability to easily map models for the aircraft dynamics 
(in multiple formalisms) into the corresponding physi-
cal components and connectors that describe the 
aircraft architecture. For example, the detailed Simu-
link/Modelica models for the aileron, flaps, and rudder 
could be associated with actuator components in the 
aircraft architecture. A similar mapping to physical 
domain components could be done for dynamic mod-
els of the sensors, the aircraft frame (mechanical), 
and engine system (fluid, thermal). This approach 
would help the design team to store the physical 
modeling information about the system from multiple 
tools along with component specifications from the 
cyber domain, in a single, unified framework. It would 
also give the system engineer the flexibility to explore 
design alternatives for the various avionic subsys-
tems.  
 
Another important consequence of incorporating the 
physical subsystems into the architecture is the ability 
to assess design trade-offs across the cyber-physical 
boundary. One could envision replacing a particular 
sensor with another having a better resolution/range, 
but with greater weight/cost. To study the system-
wide effect of this change, one could analyse the 
performance to weight tradeoffs on the combined 
software and physical aircraft systems. Several rele-
vant questions could be answered. For example, 
does the change impact the data rate of the commu-
nication channel between the high resolution sensor 
and the controller? Will the scheduling of the current 
task set still be valid with more information to process 
per sensor update cycle? Which would give better 
control performance: a better sensor with a simpler 
control algorithm or a less costly sensor with a mem-
ory- and processor-intensive controller? The answers 
to such questions involve choices in both the cyber 
and physical worlds, including the couplings between 
the two domains.  Having a unified CPS architectural 
framework can decrease the lead-time to develop 
several ready-to-use architectures of the aircraft 
model, with different levels of detail, so that the engi-
neers can investigate many more design alternatives 
with a high level of accuracy of the analysis, thus 
minimizing the risks of costly “design-build-test-fix” 
cycles.  
 
A third benefit concerns the relationships between the 
multiple heterogeneous models utilized in the design 
and verification of a complex cyber-physical system. 
The exchange of information, assumptions, and in-
ferences among the many groups of engineers in-
volved is typically informal at best, and it is particu-
larly difficult when the structure and semantics of the 
modeling formalisms differ significantly. Conse-
quently, correctness of the design is inferred by a 
combination of engineering judgment supported by 
extensive testing of the final system. There is a need 
to develop an architectural formalism with structural 

and semantic annotations that can represent both 
cyber and physical system-level requirements and 
specifications along with the assumptions and impli-
cations associated with the many verification models 
developed for the system. The proposed CPS archi-
tectural style provides the reference context for mak-
ing meaningful associations across the disparate 
models used for analysis and verification.  

4. CPS Architectural Style 

We use the Acme ADL [5], which has strong support 
for defining extensible architectural styles. In Acme, 
an architectural style is represented as a family of 
element types that adhere to rules governing what 
kind of components and connectors can be present 
in the system and the manner in which they can be 
connected. A general style can be refined into an 
application-specific style by extending existing types 
and adding additional element types and rules. 
 
The challenge in defining an architectural style for 
cyber-physical systems is to strike a balance be-
tween specificity and generality. We focus on em-
bedded monitoring and control systems. Our goal is 
to create a family of general components and con-
nectors that can serve as the foundation for applica-
tion-specific styles in this broad domain. Towards 
this end we define the following three related families 
pertaining to the cyber domain, the physical domain, 
and their interconnection. The goal of creating the 
CPS architectural style is to provide a representative 
set of components and connectors that can be ex-
tended to full implementations in targeted application 
frameworks. 
 
4.1 Cyber family 
The cyber side of CPS is the traditional domain for 
ADLs and provides support for standard real-time 
monitoring and control applications. The cyber com-
ponents are: 
Data Stores: These components store data as an 
interface between the computational elements in the 
system. In simple systems, these could be just pas-
sive memory blocks. In complex systems there could 
be further details specifying what components can 
read and write to the data store components. 
Computation: Computation components operate on 
and update data posted in data store components. 
This includes components that perform filtering, state 
estimation, and control. 
IO Interfaces: These components perform the com-
putations and timing functions required to sense and 
control the physical world. This would include, for 
example, smart sensor software that processes raw 
sensor data. 
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In addition to the computational aspects of the soft-
ware, it is important to represent the communication 
elements in the system to reason about timing be-
tween software elements and how this affects the 
physical behavior of the complete system. We repre-
sent two major types of cyber connectors, a call-
return connector, representing one-to-one communi-
cation and a publish-subscribe connector for one-to-
many communication. 
 
The communication mechanism could be event-
based, synchronous or asynchronous, and is speci-
fied in the role defined for each connector. Further-
more, each connector type can be refined further, 
based on the communication semantics of the inter-
acting components. For example, the publish-
subscribe connector could be elaborated to define 
communication between CORBA components. 
 
4.2 Physical family 
There are several challenges in developing a suitable 
architectural representation of the physical side of 
cyber-physical systems. Architectural models should 
not have all the details required for a full simulation of 
the physical dynamics. At the same time, the archi-
tectural components and connectors should corre-
spond to intuitive notions of physical dynamics in the 
same way cyber components and connectors corre-
spond to elements of computational systems. To 
achieve this balance, we introduce components and 
connectors based on an energy view of physical sys-
tems. This provides a domain-independent perspec-
tive, including the ability to represent interactions 
between different physical domains and the possibil-
ity to specify system properties such as power flow 
and causality. This is similar to the perspectives tak-
en in bond graphs [8] and Lagrangian mechanics 
[12], where power-conjugated variables (effort and 
flow) describe signal flows between sources, energy 
storage elements, and dissipative elements. 
 
The physical family is an architectural style to model 
multi-domain physical systems. When two or more 
components from the physical family are connected, 
the implication is that they exchange energy in some 
way. The ports of each physical component define its 
effort and flow variables. The product of this “power 
conjugate” pair equals generalized power in the phys-
ical domain of interest. Power flowing into a compo-
nent is defined as positive. This is analogous to posi-
tive mechanical work being defined as work done by 
the applied force on the component. A component’s 
constitutive equations (attached as behavior annota-
tions) define the relationships between the port vari-
ables and the internal state variables. Each physical 
domain extends the basic port type by defining effort 
and flow variable types relevant to that domain, along 
with their units and ranges of acceptable values. For 
example, an electrical physical port would define 

voltage and current as the conjugate variables for 
electrical components. There would be two (or more) 
ports for each generic electrical component. The 
voltage across the component and the current 
through it (along with either charge or flux as the 
stored quantity) would be defined in terms of the 
conjugate variables at the electrical ports.  
 
A connector (along with its roles) defines the rela-
tionship between the effort and flow pairs of all the 
components that are attached to the connector. The 
connectors constrain the form of energy exchange 
between the components by enforcing the laws of 
conservation of the respective physical quantities at 
all times. For example, an electrical connector’s 
semantics would enforce Kirchhoff’s current and 
voltage laws between the conjugate variables of its 
connected components.  
 
The physical component types are: 
Energy sources: A source component delivers con-
stant effort (or flow) to other components, regardless 
of the load presented to it. This is analogous to an 
ideal voltage (or current) source. Because of the 
defined direction of power, such components will 
have negative flow as long as they are supplying 
power to other components. A source behaves like 
an energy sink when it consumes power from its 
surroundings. An example is a rechargeable battery 
component in charging mode. 
Energy storage: An energy storage component 
models dynamic elements or subsystems that store 
energy, such as components that have capacitive 
and inductive properties in electrical systems. Ports 
on these components allow power transfer to other 
subsystems. 
Dissipative components: These model physical ele-
ments that lose energy over time. They correspond 
to resistors in electrical circuits and dampers or fric-
tion losses in mechanical systems. Power losses can 
take place in complex ways within physical compo-
nents. Hence, the semantics of a dissipative compo-
nent is completely defined by its energy loss func-
tion, which describes the relationship between the 
effort and flow variables of all its connected ports.  
Physical transducers: Transducers represent power 
transfer or energy conversion between different 
types of physical domains. These components are 
particularly useful in modeling multi-domain systems 
with, for example, electromechanical devices that 
transform energy between the electrical and me-
chanical domains. Transducers contain at least one 
port from each of the physical domains they inter-
connect.  
 
The physical connector types are: 
Equal effort: The constraints on the power conjugate 
variables of the component ports coupled with this 
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connector are: (1) the effort variables of all connected 
ports are equal; and (2) the sum of the flow variables 
of all connected ports is zero. This connector repre-
sents the application of Kirchoff’s laws in the electri-
cal domain and force/moment balance laws in the 
mechanical domain to coupled components. 
Equal variable: This connector indicates that the vari-
ables at the ports of the components are identical. 
There is no directionality associated with this connec-
tor. 
Measurement: Measurement connectors indicate 
conjugate variables that are determined by one phys-
ical component and used as an input in another phys-
ical component. Thus, these connectors are direc-
tional and correspond to connections in traditional 
block diagrams (e.g., signal lines in Simulink). 
 
4.3 Cyber-physical interface family 
We define the cyber-physical family to bridge be-
tween the cyber and the physical worlds. The follow-
ing elements of the cyber-physical interface (CPI) 
family represent connections between computational 
and physical systems: 
CPI components: cyber-to-physical (C2P)/physical-to-
cyber (P2C) transducers; 
CPI connectors: cyber-to-physical/physical-to-cyber 
translators. 
 
The difference between CPI components and CPI 
connectors is a matter of detail and sophistication in 
the interface. An intelligent sensor that performs sig-
nal processing functions might be represented as a 
CPI component, whereas a simple digital thermome-
ter could be represented as a CPI connector. 
 
Together, the three generic families can be combined 
to and extended to provide a unified model of a cy-
ber-physical system. The generic CPS component 
and connector types can be used to define new fami-
lies with application-specific features and attributes. 
For example, the physical family can be specialized 
to the translational/rotational mechanical domain by 
creating physical ports that define velocity/ angular 
velocity as effort variables and force/torque as flow 
variables. The source components become 
force/torque and velocity/angular velocity sources, 
respectively.  Mass and moment of inertia (MI) corre-
spond to energy storage elements. They represent 
the ability of a material body to store kinetic and po-
tential energy. The energy storage concept can be 
generalized to a rigid body component, which con-
tains both mass (annotated with the centre of gravity 
(CG) coordinates) and MI as subcomponents. The 
rigid body also contains body coordinate frames and 
transformations between them as annotated proper-
ties. Dissipative components reflect phenomena 
where mechanical energy is lost over time, such as 
static friction and viscous damping.  

We can define three mechanical connectors, corre-
sponding to the three physical connector base types. 
For example, an equal velocity connector defines a 
mechanical coupling between two or more compo-
nents which constraints them to move with the same 
velocity in the given frame of reference, while the 
joint forces sum to zero. Equal variable connectors 
equate the force and velocities of the connected 
components, while measurement mechanical con-
nectors can be used to interface force (torque) and 
velocity sensors to rigid body components. 

5. Example: STARMAC Quadrotor 

The Stanford Testbed of Autonomous Rotorcraft for 
Multi-Agent Control (STARMAC) [22], a fleet of qua-
drotor helicopters, has been developed as a test bed 
for novel algorithms that enable autonomous opera-
tion of aerial vehicles. As shown in Figure 2, the 
vehicle has four rotors, arranged symmetrically 
about its body frame. The rotors are powered by 
lightweight, brushless DC motors, which result in a 
thrust of 8 N per rotor.  
 

 
Figure 2. The STARMAC quadrotor [22]. 

The hardware configuration of the STARMAC is 
shown in Figure 3. The vehicle is equipped with 
three separate sensors for full state estimation. A 
Microstrain 3DMG-X1 inertial measurement unit 
(IMU) provides three-axis attitude, attitude rate and 
acceleration, through a built-in estimation algorithm 
that relies on three gyroscopes, three accelerome-
ters and three magnetometers. Height above the 
ground is determined using a sonic ranging sensor, 
either the Devantech SRF08 or the Senscomp Mini-
AE with 3 to 5 cm accuracy. Three-dimensional posi-
tion and velocity measurements are made using 
differential GPS relying on the Novatel Superstar II 
GPS unit. This unit outputs raw measurements at 10 
Hz and the resulting position accuracy is 1 to 2 cm 
relative to a stationary base station. An onboard 
extended Kalman filter is used to combine GPS and 
raw inertial measurements for accurate full-state 
estimation.  Computation and control are managed 
at two separate levels. The low-level attitude control, 
which performs real-time control loop execution and 
outputs PWM motor commands, occurs on a Robos-
tix microcontroller based on the Atmega 128 proces-
sor. The high level planning, estimation and control 
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occurs on either a lightweight Gumstix running em-
bedded Linux on a PXA270 microprocessor, or on an 
Advanced Digital Logic ADL855 PC104 running Kub-
untu Linux. 
 

 
Figure 3. Quadrotor hardware architecture [22]. 

The Gumstix (0.05 kg) provides sufficient computa-
tional resources for carrier-phase differential GPS 
calculations and can be used to perform autonomous 
position control without the ability to add additional 
coordination algorithms between vehicles. As an al-
ternative, the PC104 (0.48 kg) provides a wealth of 
computation power, at the cost of additional weight 
and hence, shortened flight times. The Robostix and 
Gumstix/PC104 communicate via a 115 kbaud RS-
232 (serial) link. Communications between the high-
level computers and the ground station are managed 
through UDP over a WiFi network. The Gumstix uses 
802.11b, and the PC104 uses 802.11g.  
 
The ground station controller (GSC) is a high-level 
motion planner and coordinator for the quadrotor. It 
generates reference trajectories for the quadrotor to 
follow, displays telemetry data received from the ve-
hicle, and manages coordination among multiple 
aircraft. The ground station also has joysticks for 
control-augmented manual flight, when desired. With 
reference to Figure 4, we see that the nonlinear dy-
namics of the quadrotor helicopter are those of a 
point mass m  with moment of inertia 3 3

bI R ×∈ , loca-

tion 3Rρ ∈  in inertial space, and angular velocity 
3Rω∈  in the body frame. The vehicle undergoes 

forces 3F R∈  in the inertial frame and moments 
3M R∈  in the body frame, yielding the equations of 

motion, 
 
 
 
 
 
 
 

where bD  is the aerodynamic drag force, and g  is 

the acceleration due to gravity. ,jR IR and ,jR BR  are 

the rotation matrices from the plane of rotor j to the 
inertial coordinates and the body coordinates, re-
spectively. One of our objectives is to formally repre-
sent such dynamic behavior in the CPS architecture 
for the quadrotor system. 

 

Figure 4. Quadrotor free body diagram [22]. 

6. Quadrotor architecture in the CPS style 

Figure 5 illustrates the use of the CPS style to model 
the quadrotor in AcmeStudio. On the cyber side, 
each controller (attitude, position, and GSC) is 
mapped to a separate computation component that 
implements the control algorithm. The communica-
tion of setpoints from a higher-layer controller to a 
lower-layer controller is modeled as a send-receive 
connector. The periodic relaying of vehicle state from 
the lower control layer to the higher layer is modeled 
as a publish-subscribe connector. This illustrates the 
use of distinct connector types to represent different 
communication patterns between the same compo-
nents. Since there is no direct communication chan-
nel between the attitude controller and the ground 
station, no connector exists between them. 
 
The vehicle frame is modelled as a rigid-body com-
ponent, whose mass and MI are affected by the 
forces and moments acting at its ports, according to 
the dynamic equations of the quadrotor. The vehicle 
frame is annotated with the body and inertial refer-
ence frames along with the ,jR IR  and ,jR BR  trans-

formations. Each rotor and motor actuator is mod-
eled as a single electromechanical transducer called 
Act, containing an electrical port and two mechanical 
ports, one each for the translational and rotational 
domains. The component models the conversion of 
input motor voltage to an output thrust (force) and 
torque acting on VehicleFrame. As we refine the 
architecture, this composite component can have 
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sub-structure, where the motor and rotor are separate 
components, with a torque connector between them. 
Each Act is connected to the VehicleFrame by two 
equal velocity connectors, one for force balance and 
one for moment balance. This models the action and 
reaction phenomenon between each rotor assembly 
and the vehicle frame. 
 

 
Figure 5. Quadrotor CPS architecture. 

The drag force is described as a dissipative compo-
nent, whose magnitude depends on the wind velocity 
and the aircraft velocity, among other parameters. 
The complex empirical relationship of drag force to 
the velocities at its ports is annotated as a behavior 
property of the component. Gravitational force is 
modeled as a flow source component, since it exerts 
a constant force on the airframe. It is connected to 
the vehicle frame by a measurement connector. 
 
The IMU and GPS are both modeled as P2C trans-
ducers, since they perform filtering on their raw sen-
sor readings. On the cyber side, they are connected 
to their respective controllers by publish-subscribe 
cyber connectors, since these sensors send periodic 
streams of data to the controllers. On the physical 
side, they are connected by measurement connectors 
to the vehicle frame. The sonar sensor is modeled as 
a simple P2C connector, going from the vehicle frame 
to the attitude controller. The connector is annotated 
with sonar parameters including detection beam 
width, effective range, and resolution.  Each Act 
component is sent actuation commands from the 
attitude controller through C2P connectors, repre-
senting the conversion of cyber commands to voltage 
(PWM signals) for each motor. 

 

7. Models as architectural views  

In virtually all verification tools, models are con-
structed as collections of interacting components or 
modules. Thus, each verification model has a struc-
ture that can be viewed as an architecture with syn-
tax and semantics defined by the particular formal-
ism underlying the design of the tool. From a struc-
tural perspective, an architectural view supports the 
description of a derived architectural model to ab-
stract over details that are irrelevant for a particular 
analysis. The relationships between components in 
the structure of a verification model and components 
in the CPS architecture will not generally be one-to-
one, however. Current tools do not provide insights 
into the relationships between architectural views. 
This represents a problem for architectural modeling, 
since it is generally impossible to understand how 
design decisions or analyses in one view impact 
those of another.  
 
The approach proposed here focuses specifically on 
component-and-connector views representing the 
architectures of verification models as abstractions 
of a shared more-detailed baseline architecture. In 
this context, well-defined mappings between a view 
and the full architectural description can be used as 
the basis for identifying and managing the depend-
encies among the architectural views and to evalu-
ate mutually constraining design choices. The full 
baseline architecture thus becomes the repository 
for retaining results from various analyses and de-
signs so that the interdependencies are explicit. The 
rest of this section describes how an architect can 
represent two different models of the quadrotor sys-
tem as distinct architectural views.  
 
7.1 Data flow view  
From a control engineer’s perspective, the quadrotor 
system can be viewed as a data flow (Simulink) 
model, as shown in Figure 6. The position and atti-
tude controller components in this architectural view 
are represented by the robostix and gumstix subsys-
tems in the Simulink model. The vehicle dynamics 
are represented by the starmac_dynamics block, 
and the GPS sensor is defined by the Superstar_II 
block. If each of these Simulink blocks could be 
mapped to a component type in a new ‘data flow’ 
architectural style, then the Simulink model could be 
thought of as an architecture instance in its own 
right. The component and connector semantics for 
this architectural style come from the underlying data 
flow semantics of the Simulink metamodel. With 
such a mapping defined, one can ask how the data 
flow architecture is related structurally and semanti-
cally to the underlying quadrotor CPS architecture. 
 
The data flow view focuses on the control perform-
ance of the quadrotor and typically ignores controller 
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implementation details such as scheduling of tasks 
and associated communication jitter and delays. In 
particular, it assumes lossless communication be-
tween the GSC and the position controller onboard 
the quadrotor. However, in the implemented system, 
the two controllers communicate via a lossy wireless 
network. To analyze how the quality of the communi-
cation channel affects the temporal assumptions of 
the controllers, the designer would have to create a 
detailed simulation of the network in Simulink model. 
However, this class of behaviors could be analyzed 
fairly easily in a process algebra perspective of the 
system, as shown in the following section. 
 

 
Figure 6. Quadrotor Simulink model[22]. 

7.2 Process algebra view 
Finite State Processes (FSP) [13] is a process alge-
bra in the tradition of CSP [27], where behavior is 
modeled in terms of event patterns, called processes 
that denote sets of traces. Each event in a trace 
represents a discrete transition of a system. Patterns 
are built up out of operators that indicate the occur-
rences of events, sequencing of events, choice, and 
parallel composition. Parallel processes synchronize 
on shared events, which can also be used to pass 
values between processes. In general, FSP captures 
the behavior of cyber elements fairly well, while phys-
ical elements are described by abstracting away their 
continuous dynamics. The components in an FSP 
architectural view are those entities whose behavior 
can be described by an FSP primitive process. A 
connector between two FSP components signifies 
that the two processes interact with each other 
through events and describes the protocol for that 
interaction. 
 
The FSP architecture view of the quadrotor currently 
abstracts over the dynamics of the quadrotor and 
focuses on the communication between the ground 
station and position controller components. The qua-
drotor system is a composition of the two FSP com-
ponents in which the GSC sends a single position 

command to the PC after it gets a command from 
the user to move the Rotor to a location. The PC 
continuously provides position status information 
back to the GSC.  It is assumed that the PC controls 
the rotor assembly reliably so that if it is told to move 
the rotor to a given position, it will do so. This is an 
assumption that would be verified with other more-
detailed models of that part of the system, probably 
in a different modeling formalism. 
 

 
 

 Figure 7. FSP specifications for quadrotor. 

 
Each component of interest in the architectural view 
is annotated with a process of the FSP specification 
in Figure 7 (e.g., the Gnd_Station component of the 
CPS architecture is annoted with the GroundStation 
process). The connectors between Gnd_Station and 
Position_Ctrl are modeled with one or the other of 
the connector behaviors. Having alternative connec-
tor protocols allows us to compare the behavior of 
the overall system depending on the protocol of the 
connection: a lossy connector might represent a 

// Ground Station 

GroundStation = GS[0][0][False], 

 GS[actual:POS][desired:POS][sent:BOOL] = ( 

    getNewPos[newPos:POS] -> GS[actual][newPos][False] 

  | at[newPos:POS] -> GS[newPos][desired][sent] 

  | when (actual!=desired && !sent) sendCmd[desired]  

   -> GS[actual][desired][True] 

     ). 

// Position Controller 

PositionController = PS[0][0], 

 PS[actual:POS][desired:POS] = ( 

    goTo[newPos:POS] -> PS[actual][newPos] 

  | when (actual != desired) controlRotors  

   -> PS[desired][desired] 

  | curPos[actual] -> PS[actual][desired] 

 ). 

// Connectors 

//Lossy connector 

MsgConnLossy = (getMsg[val:VAL] -> DeliverMsg[val]), 

 DeliverMsg[val:VAL] = ( 

    try -> putMsg[val] -> MsgConnLossy 

  | try -> MsgConnLossy). 

 

//Lossy connector with retry 

MsgConnRetry = (getMsg[val:VAL] -> DeliverMsg[val]), 

 DeliverMsg[val:VAL] = ( 

    try -> putMsg[val] -> MsgConnRetry 

  | try -> DeliverMsg[val]). 

 

// System with lossy connector 

||QuadRotorL = (GroundStation || PositionController  

    || cmd:MsgConnLossy || status:MsgConnLossy) 

    /{sendCmd/cmd.getMsg, goTo/cmd.putMsg,  

      curPos/status.getMsg, at/status.putMsg}. 

// System with retry connector 

||QuadRotorR = (GroundStation || PositionController  

    || cmd:MsgConnRetry || status:MsgConnRetry) 

    /{sendCmd/cmd.getMsg, goTo/cmd.putMsg,  

      curPos/status.getMsg, at/status.putMsg}. 

 

// Condition to check 

assert CorrectControl =  

 [](forall[p:POS] (getNewPos[p] -> <> at[p])) 
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wireless UDP link while a lossy connector with retry 
might model a wireless TCP. The architecture can 
then be used to yield the complete FSP specification 
shown in Figure 7.   
 
The property to be checked is the following: if the 
user tells the GSC to move the rotor to a particular 
position (abstracted as either position 0 or position 1), 
the GSC will eventually receive a status message 
from the PC that it is at that location. This FSP speci-
fication is analyzed by the Labelled Transition System 
Analyser [13] tool. The analysis tells us that the prop-
erty holds when retrying connector is used, but fails 
when the lossy connector is used. This illustrates how 
a system designer might compare design tradeoffs in 
the cyber world between different protocols of interac-
tion between GSC and PC. 

8. Behavioural annotations and analyses 

The architectural elements describe only the struc-
tural information about a system. To be able to do 
meaningful formal analysis on the system behavior, 
one must annotate the architecture with behavioral 
information. In Acme ADL, the behavioral annotation 
can be implemented via properties to capture the 
behavioral information. We have implemented the 
annotations for two types of behavioral modeling 
frameworks: FSP and Linear Hybrid Automata (LHA) 
[9]. We have developed plug-ins as extension points 
of AcmeStudio, which will display only the relevant 
information pertaining to the element or system se-
lected by the user. We have also built into the plugins 
the ability to generate analyzable text files from these 
properties. The plug-ins traverse the architecture, 
gather the relevant information distributed through out 
the structure and generate a text file that is analyzed 
by the relevant tool. Figure 8 shows a schematic of 
this analysis flow. Currently, there exists one plug-in 
for FSP that generates a file that can be analyzed by 
LTSA and another plug-in for LHA that generates a 
file that can be analyzed by Polyhedral Hybrid Auto-
maton Verifier (PHAVer) [7]. 
 
Because of the flexible development environment in 
AcmeStudio, a system designer can create a custom 
plugin for each of the formalisms used to model the 
system. Architectural elements are then annotated 
with properties relevant to each formalism. Figure 9 
shows an LHA plugin being used to display annota-
tions for each architectural element in an LHA view of 
a heating control system. The plugin framework is 
leveraged to generate analyses results from the het-
erogeneous behavioral annotations, and the results 
can be combined together or studied separately.  
Thus, the CPS architectural style along with these 
analysis tools provides a unifying framework to de-
velop new methods for optimizing designs with re-

spect to performance measures that characterize 
important features of the system behaviors. 
  

 
Figure 8. Behavioral analysis using plugins. 

 

 
Figure 9. LHA annotations in  AcmeStudio. 

9. Conclusion 

This paper presents a presents a way to augment 
architectural descriptions with physical elements. 
The CPS architecture style provides a set of compo-
nents and connectors for developing a complete 
architectural description of systems involving both 
cyber and physical elements. The CPS architecture 
becomes a frame of reference for multiple architec-
tural views of a system corresponding to different 
modeling formalisms.  
 
There are several directions for further research and 
development. In the current implementation, the 
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architectural views are connected to the detailed CPS 
architecture through hierarchical Acme representa-
tions that identify the relationships between compo-
nents and connectors in each view with the compo-
nents and connectors in the CPS architecture. Acme 
does not currently support resolution of inter-view 
correspondences, however, so further work is needed 
both in theory and tool support to formalize and ana-
lyze issues of consistency and completeness of vari-
ous architectural views. Currently, the analysis 
plugins rely on external analysis tools to present re-
sults. A key usability issue is to provide the results in 
the context of the architectural view from which they 
originated, and this is ongoing implementation work. 
Such tools would provide a unified context to explore 
design alternatives that cut across the boundaries 
that currently separate the methodologies that focus 
on either the cyber or physical elements of cyber-
physical systems. 
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